ERRATA FOR 'THE THEORY OF NILPOTENT GROUPS'

ANTHONY CLEMENT, STEPHEN MAJEWICZ, AND MARCOS ZYMAN

- p. 12. In Example 1.9: Instead of "Recall from Example 1.6" it should read "Recall from Example 1.4".
- p. 39. The statements of Lemmas 2.10 and 2.11 should contain equalities, not isomorphisms. Some of the isomorphisms in their proofs should also be equalities.
- p. 48. In Theorem 2.12-(ii), replace " $|H|=p^{n}$ " with ${ }^{"}|H|=p^{i}$ for some $i \leq n "$.
- p. 48. At the beginning of the proof of Theorem 2.13 , one must replace " $N_{G}(P)<M$ " with " $N_{G}(P) \leq M$ ", to allow for the possibility that $N_{G}(P)$ be maximal.
- p. 49. The proof that (vii) implies (vi) is incorrect. The issue is the claim that " $|g|$ is coprime to $|h|$ ". We cannot assume that P_{i} is the unique Sylow subgroup associated to p_{i}. To fix this, we prove that (vii) implies (v), from which it follows that (vii) implies (vi).

Suppose that the elements of G of coprime order commute. Let

$$
|G|=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{r}^{n_{r}}
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes, and let $1 \neq g \in G$ with

$$
|g|=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{r}^{m_{r}}
$$

for some $0 \leq m_{i} \leq n_{i}$. Set $q_{i}=\frac{|g|}{p_{i}^{m_{i}}}$. Note that $q_{i}=|g|$ if $m_{i}=0$, but at least one of the m_{j} is not zero. Clearly, $\operatorname{gcd}\left(q_{1}, q_{2}, \ldots, q_{r}\right)=1$. Thus, there are integers $a_{1}, a_{2}, \ldots, a_{r}$ such that $a_{1} q_{1}+a_{2} q_{2}+\cdots+a_{r} q_{r}=1$. Hence,

$$
g=g^{1}=g^{a_{1} q_{1}+a_{2} q_{2}+\cdots+a_{r} q_{r}}=g^{a_{1} q_{1}} g^{a_{2} q_{2}} \cdots g^{a_{r} q_{r}} .
$$

Put $g_{i}=g^{a_{i} q_{i}}$. Then

$$
g=g_{1} g_{2} \cdots g_{r} \text { and } g_{i}^{p_{i}^{m_{i}}}=g^{a_{i} q_{i} p_{i}^{m_{i}}}=g^{a_{i}|g|}=1
$$

Thus, $\left|g_{i}\right|$ divides $p_{i}^{m_{i}}$. And so, by Theorem 2.12-(ii), there is a Sylow $p_{i^{-}}$ subgroup P_{i} containing g_{i}. Hence, $g \in P_{1} P_{2} \cdots P_{r}$. Now, P_{i} and P_{j} have coprime order whenever $i \neq j$. So, by hypothesis, the elements of P_{i} commute with those of P_{j}.

We claim that $P_{i} \unlhd G$. Let $x_{i} \in P_{i}$. Since $g=g_{1} \ldots g_{r}$, we have

$$
g^{-1} x_{i} g=g_{r}^{-1} \ldots g_{1}^{-1} x_{i} g_{1} \ldots g_{r}=g_{r}^{-1} \ldots g_{i+1}^{-1} \overline{x_{i}} g_{i+1} \ldots g_{r}=\overline{x_{i}}
$$

where $\overline{x_{i}}=g_{i}^{-1} x_{i} g_{i} \in P_{i}$. So P_{i} is indeed normal in G. It now follows from Corollary 2.8 that P_{i} is the only Sylow p_{i}-subgroup of G. We conclude that all Sylow subgroups of G are normal.

- p. 282. (7.9) is incorrect. Replace said line with

$$
\phi\left(x G_{i}\right)=x G_{i} \text { for every } i=1, \ldots, r \text { and } x \in G_{i-1} .
$$

Department of Mathematics, Brooklyn College, Brooklyn, New York 11220
E-mail address: mzyman@bmcc.cuny.edu
Department of Mathematics, Kingsborough Community College, Brooklyn, New York 11235

E-mail address: smajewicz@kbcc.cuny.edu
Department of Mathematics, Borough of Manhattan Community College, New York, New York 10007

E-mail address: mzyman@bmcc.cuny.edu

