ERRATA FOR 'THE THEORY OF NILPOTENT GROUPS'

ANTHONY CLEMENT, STEPHEN MAJEWICZ, AND MARCOS ZYMAN

- p. 12. In Example 1.9: Instead of "Recall from Example 1.6" it should read "Recall from Example 1.4".
- p. 39. The statements of Lemmas 2.10 and 2.11 should contain equalities, not isomorphisms. Some of the isomorphisms in their proofs should also be equalities.
- p. 48. In Theorem 2.12-(*ii*), replace " $|H| = p^n$ " with " $|H| = p^i$ for some $i \leq n$ ".
- p. 48. At the beginning of the proof of Theorem 2.13, one must replace " $N_G(P) < M$ " with " $N_G(P) \le M$ ", to allow for the possibility that $N_G(P)$ be maximal.
- p. 49. The proof that (vii) implies (vi) is incorrect. The issue is the claim that "|g| is coprime to |h|". We cannot assume that P_i is the unique Sylow subgroup associated to p_i . To fix this, we prove that (vii) implies (v), from which it follows that (vii) implies (vi).

Suppose that the elements of G of coprime order commute. Let

$$|G| = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r},$$

where p_1, p_2, \ldots, p_r are distinct primes, and let $1 \neq g \in G$ with

$$g| = p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}$$

for some $0 \leq m_i \leq n_i$. Set $q_i = \frac{|g|}{p_i^{m_i}}$. Note that $q_i = |g|$ if $m_i = 0$, but at least one of the m_j is not zero. Clearly, $gcd(q_1, q_2, \ldots, q_r) = 1$. Thus, there are integers a_1, a_2, \ldots, a_r such that $a_1q_1 + a_2q_2 + \cdots + a_rq_r = 1$. Hence,

$$g = g^1 = g^{a_1q_1 + a_2q_2 + \dots + a_rq_r} = g^{a_1q_1}g^{a_2q_2}\cdots g^{a_rq_r}.$$

Put $g_i = g^{a_i q_i}$. Then

$$g = g_1 g_2 \cdots g_r$$
 and $g_i^{p_i^{m_i}} = g^{a_i q_i p_i^{m_i}} = g^{a_i |g|} = 1.$

Thus, $|g_i|$ divides $p_i^{m_i}$. And so, by Theorem 2.12-(*ii*), there is a Sylow p_i -subgroup P_i containing g_i . Hence, $g \in P_1P_2 \cdots P_r$. Now, P_i and P_j have coprime order whenever $i \neq j$. So, by hypothesis, the elements of P_i commute with those of P_j .

We claim that $P_i \leq G$. Let $x_i \in P_i$. Since $g = g_1 \dots g_r$, we have

$$g^{-1}x_ig = g_r^{-1}\dots g_1^{-1}x_ig_1\dots g_r = g_r^{-1}\dots g_{i+1}^{-1}\overline{x_i}g_{i+1}\dots g_r = \overline{x_i},$$

where $\overline{x_i} = g_i^{-1} x_i g_i \in P_i$. So P_i is indeed normal in G. It now follows from Corollary 2.8 that P_i is the only Sylow p_i -subgroup of G. We conclude that all Sylow subgroups of G are normal.

• p. 282. (7.9) is incorrect. Replace said line with

 $\phi(xG_i) = xG_i$ for every $i = 1, \ldots, r$ and $x \in G_{i-1}$.

Department of Mathematics, Brooklyn College, Brooklyn, New York 11220 $E\text{-}mail\ address:\ \tt{mzyman@bmcc.cuny.edu}$

Department of Mathematics, Kingsborough Community College, Brooklyn, New York11235

E-mail address: smajewicz@kbcc.cuny.edu

Department of Mathematics, Borough of Manhattan Community College, New York, New York $10007\,$

 $E\text{-}mail \ address: \texttt{mzyman@bmcc.cuny.edu}$